Lens hunting with Herschel

Tom Bakx

Gravitational lenses provide otherwise unreachable levels of detail

Gravitational lenses provide otherwise unreachable levels of detail

The *H*-ATLAS survey is used to find large samples of lenses

Gravitational lenses provide otherwise unreachable levels of detail

Large surveys don't have the detail of ALMA observations

ALMA

Herschel

Source confusion effects need to be measured

	Herschel		
λ [µm]	250	350	500
Angular size	18"	25"	36"
Surface	158%	306%	634%
Beam size			

JCMT's luminosities at different resolutions estimate source confusion

JCMT's luminosities at different resolutions estimate source confusion

Template SED made from 26 spectroscopic sources

First analysis of the sources suggest a lensed sample bias

Preliminary results show a lensing-biased survey

Resolved images are necessary for definitive lensing evidence

KIDS and VIKINGS surveys will provide information on the lenses

This will help us improve lens-finding algorithms

Lens hunting with Herschel

Tom Bakx

